
1 1 / 0 4 / 9 9 THU 1 1 : 3 3 FAX 5 1 5 294 0258 ISZI COMPUTER SCIENCE rQI 0 0 2

An Approach to Architectural Analysis of Product Lines

Gerald C . Gannod*tt
Computer Science and Engineering

Arizona State University
Box 875406

Tempe, AZ 85287-5406

gannodQasu.edu
(480) 727-4475

ABSTRACT
This paper addresses the issue of how to perform ar-
chitectural analysis on an existing product line archi-
tecture. The contribution of the paper ie to identify
and demonatrate a repeatable process for the analysis
of an existing product line architecture. The approach
defines a “good” product line architecture in terms of
those quality attributes required by the particular prod-
uct linc under development. It then analyzes the archi-
tecture against these criteria by both manual and tool-
supported methods. The phaaed approach described irl
this paper provides a structured analysis of an existing
product line architecture using (1) formal specification
of the high-level architecture, (2) manual analyYis of scc-
narios to exercise t,he a.rchitecture’8 BUPPOT~ for rcquirecl
variabilities, and (3) model checking of critical behav-
iors at the architectural level that are required for a11
systems in the product line. Results of an application
to a software product line of spaceborne telescopes are
used to explain and evalum the approach.

Keywords
Software Architecture, Software Archltetture Analysis,
Product Lines, Intcrferornetry Software

1 INTRODUCTION
A software product line is a collection of systems that
share a. managed sel: of propertics that are derived from
a common set of software assets [43. A product line
approach to software development. is a.ttractive to most
organizations due to the focus on reuse of both intellec-
tual effort and existing tangible artifacts. The systems
in a software product line usually share a common ar-
chitecture. For a new product liue, many alternative

‘Thie research was perfnrmed while this author WELV R vieit,ing

+This author eupported in part by a NASA Summer k u l t y

$Contact Author.
!Mailing addrees: Dept.. of Computer Science, Iowa Stata Uni-

reeeercher at ahc Jet Propulaion Laboratory.

Fkllowship.

vcrslty, 226 Ataneaoff Hall, Ames, IA 50011-1041.

Dmft of paper elrbrnir t td to ICSE 2000.

Robyn R. Lutd
Jet Propulsion Laboratory

4800 Oak Grove Drive
M/S 125-233

Pasadena, CA 91109-8099
(515) 294-3654

rlutz@cs.iastate.edu

architectures are derived from requirements and one is
selected m the “baseline” or [‘core’’ for futurc systems.
For a product line that leverages existing systems, an ar-
chitecture may already be in p1a.c~. with organizational
commitment to ita continued use.

This paper addresses the issue of how to perform axchi-
tectural analysis on an existing product line mchitec-
turc. The contribution of t,hc paper is to identify and
demonstrate a repenta(b1e process for the analysis of an
existing product line architecture. Throughout the p+
perr application to a software product line of spaceborne
telescopcs is used to explain and evaluate the approach.
The approach defirles a “good” product line architec-
ture in terms of those quality attributes required by the
particular product line under development- It then a.11-
alyzev the architecture against these criteria by both
manual and tool-supportcd methods.

This paper demonstrates the analytical value of speci-
fying an existing architecture with an Architectural De-
scription Language (ADL), both in terms of identifying
architectural mixmatches with the product line and in
terms of providing a hascline for subsequent automated
analysets. Once an ADL model existl, the architecture
can be exercised manually by measuring the effect on
the ;mhitccture of each of a set, of scenarios selected to
ca,pture the required attributes (e.g., modifiability, fault
tolerance). We found that thiv technique was particu-
larly effective at verifying whcther or not the archjtec-
ture supported planncd variabilities within the product
line.

hrtber verification of the architecture involves auto-
mated tool support to analyze key, common behaviors.
We were particularly interested in the adequacy of the
fault-tolerant behavior of a critical data interface com-
mon to all systems. Model checking of the targeted
behaviors allows demonstration of the consequences of
some architectural dccisions for the product line.

The phaqed approach described in this paper provides a
structured analysis of an exiating product line architec-
ture using (1) architectural recovery and specification,
(2) manual analysis of scenarios to exercise the srdlitec-
ture’s support for required variabilities, and (3) model
checking of critical behaviors at the architectural level

http://gannodQasu.edu
mailto:rlutz@cs.iastate.edu

1 1 / 0 4 / 9 9 THU 1 1 : 3 3 FAX 5 1 5 2 9 4 0 2 5 8 ISLI COMPZPTER SCIENCE kg 0 0 3

that are required for all systems in thc product line.

The rest of the paper is organized as follows. Section 2
provides background relating to software a,rcllitecture,
product lines, and the interferometer application. Scc-
tion 3 describes the three-step approach outlincd above
in greater detail. Section 4 presents and discuvsas the
reaults from the manual and tool-supported analyses.
Section 5 briefly describes related work. Section 6 of-
fers concluding renlarka and indicates some directions
f w future research.

2 BACKGROUND
This section describes background material in the arean
of software architectures, software product Iines, a,nd
interferometry.

2.1 Software Architectures
A software architecture describes the overdl organiza-
tion of a software system in terms of its constituent ele-
ments, including coxuput&tional units and their intcrre-
lationships [15]. In general? an architecture is specified
as a configuration of components and connectors. A
component is an encapsulation of a computational unit
that has an in te rke tha t specifies the capabilities that
the component can provide and the ways that a com-
ponent delivers its capabilities. The interface of a ~0111-

ponent is specified by the the type of the component,
by one or more ports supported by the componcnt, and
by the constmints imposed 011 the ports of t,he com-
ponent, where component types are intended to cap-
ture architectural properties. Ports are the interact,ion
points throclgh which a component exchanges rcsourccs
with ita environment. Port specifications specify the yig-
natures, and optionally, the behaviors of the resource.
Logic-based formal specifications may be attsched to a,
port to precisely capture behavioral properties. Formal
specifications of this sort enable a semantic-based ap-
proach to analyzing achi tecturd behavior.

Connectors encapsulate the ways that componeuts in-
teract. A connector is specified by the type of the con-
nector, the mles defined by the connector type, and the
constraints imposed 0x1 the roles of the connector. A
connector defines B set of roles for the participants of
the interaction specified by the connector. Connector
types are intended to capturc recurring component in-
teraction styles.

Components are connected by configuring their ports
to the roles of connect,ors. Each role has a domain that
defines a set of port types and only the ports whose
types are in the domain can be configured to the role.

Another important concept in the area of aoftware ar-
chitectures ia the concept of an architecmml style. An
architectural style defines patterns and semantic cnn-
straints on a configuralio~~ of components and connec-
tors. As such, a style can define a set or family of sys-
tems that share common architectural semantic$ [13].

For inatancc, a pipe and filter style refers to a pipelincd
set of components whereas a layered style refers to a
set ol cornponents that communicate via hierarchies of
interfaces. The distinction between architectural stylc
and architectllre is an important concept throughout
Lhe work described here. As one would expcct, all the
systems in our example product line shate a basc ar-
chitectural style and a set of shared software compo-
nents that are organized and communicate in certain
prescribed manners. However, there are architectural
variations among the systems regarding the number of
components and connectors, with some systems repli-
cating portions of the baseline reference architecture in
their individual architectures.

2.2 Product Lines
Bass, Clemerlts, and Kazman define a softzuan product
line as “x collcction of systems sharing a managed set of
features constructed from a, common set of core software
assets” [4]. These aasets typically inchdc a base archi-
tecture and a, set of shared software components. The
software architecture for the product line displays the
commonality that the systems share and provides the
mcchanisms for variability among the products. The
systems in the product line are referred to as members
or deriuntaves of the baseline architecture or architec-
turd style.

2.3 Interferometers
The product line of interest in thia work is a set of in-
terferometer projects under development by NASA’s Jet
Propulsion Laboratory. An interferometer, in this con-
text, is a collection of telescopes that act. together aa a
single, very powcrful instrument. Interferometers will
be used to explore the origins of stars and galaxies and
t n search for Earth-like planets around distant stars.
An interferometer combines the starlight it collects from
telescopes in such a way that the light “interferes” or in-
teracss to incrcssc the intensity of the observation. This
allnws precise nleasurernents to he macle.

Among the NASA interferometers either proposed or
under development for launch in the next twenty years
are the Space Interferometry Mission (SIM), the New
Millenium Program’s Space Technology-3 (ST-3), and
the Terrestrial Planet Finder (TRF), well BS the
ground-based Keck Interferometry Project and the
Mount Palornar Interferometer [8, 141. ST-3 and TPF
use telescopes that fly in formation on separated space-
craft, but work together as a single instrument, while
the other projects involve multiple teleeeopes working
together on one or more fixed axes.

Among the components shared by the interferometer
systems and discussed in this paper are the Delay Line,
thc Fringe Ikacker, and the Internal Metrology. The
Dalay Line software compensates for the difference in
time between when starlight arrives at the separate mir-
rors. The Fkinge Tracker software provides constant

1 1 / 0 4 / 9 9 THZI 1 1 : 3 4 FAX 5 1 5 2 9 4 0 2 5 8 I SI1 COMPUTER SCIENCE If4004

feedback to the Delay Line regarding needed adjust-
ments t o maintain ped< intensity of the fringe (patterns
of light and dark bands produced by interference of the
light). The Internal Metrology software provides input
to the Delay Line regarding small changes in distances
among parts of the intcrferorneter that must be included
in its calculations.

In previous work, we analyzed commonalities and vari-
abilities of the JPL interferometry software project, [12].
The software in these interferometers has a high dcgree
of commonality with a managed set of sharcd features
built from core software components [3]. A group of
developers with a strong background in interferometer
software is in place at JPL to develop and provide to the
interferometer projects a set of reusable, generic soft-
ware components.

S APPROACH
In this section we describe the approach that was uscd
to analyze an interferometer software product line. Sec-
tion 3.1 summariaea the overall process used during the
project and introduces the architectural recovery, dis-
covery, and specification of the existing product line;
Section 3.2 describes the manua;l analysis process used
to measure quality attributes related to product lines;
and Section 3.3 describes the behavioral malysis per-
formed using automated tool support,.

3.1 Pro cess
A software axchitecture is One key required element that
should be presellt in order to analyze wftware for prod-
uct line “fitness” .since it is the architecture, above amy
other artifact, that is being reused. One of the prop-
erties of t,his particular product line is that although
an architecturally-based product line approach way not
used in the construction of the software, the artifacts
(both conceptual and physical) were being used in a
manner indicative of a product line approach. As such,
several software products had been developed or were
in the process of being developed based or1 the corc ar-
chitect,ure.

For the interferometer software, we performed the fol-
lowing architecture-centered steps:

1. Architecture recovery, discovery, and specification

2. Manual architectural analysis

3. Tool assisted architectural analysis

The first st8ep, architecture recovery, discovery, and
specification, WBB used in order to facilitate two goals:
1) to familiariae the analysts with the problem domain
and implemented solution, and 2) to support constr~rc-
tion of a software architectural representation that W ~ E I

consistent with current standards and vocabulary. For
this step, documentation, source code, and developer

communication was used to usist in the construction of
a reasonable specification of thc software aschitecturc.
The result,ing specifications formed the basis for dl sub-
sequent analy~es, manual and automated.

The sofhware architecture recovered in the first step
formed the baseline or core architecture for tho inter-
ferometer product line. The assumption in this step
(later confirmed by the analysis described below) w a
that, a,lthough changes in software code are frequent,
significant modifications to the software architecture are
infrequent. As such, a reasonable, initid view of the
software architecture can be derived from existing d e
sign docunlerlts and later modified as new information
is recovered.

To aid in the validation of the models constructed in the
first step, we consulted with the project engineers to de-
termine the accuracy of the architecture BS documented
in comparison with how the project engineers viewed
thc architecture. This information was instrumental in
constructing a more accurate view of the interferometer
architecture.

To further validate the accuracy of the core architecture
and its scalability to the existing and planned prod-
ucts in thc product line, we then compared the core to
the individual product line derivatives. To facilitate the
comparison, we used Table 1 as a medium for commu-
llication with several developers. In the table, each row
rcpresents a different component that could be poten-
tially present in an interferometer system. The columns
represent thc different derivatives that are currelltly ei-
thcr being developed or are planned for deployment over
thc next several years. This table served ae B simple
way to represent features of thc architecture that are
common in behavior to each potential derivative, but
can potentially u5ty in multiplicity bmed on the num-
ber of potential starlight collectors or “arms”. For each
derivative, we consulted with developers to verify that
the number of components listed irl the table was con-
sistent with individual mission nlans.

Table 1: Comparison Matrix

The next phase of the approach was to perform a num-
ber of analyses in order to help determine whether the
architecture was amenable to a product line develop-

1 1 / 0 4 / 9 9 THU 1 1 : 3 5 FAX 515 294 0258 ISZT COMPUTER SCIENCE kg 0 0 5

Figure 1: Interferometer Software Architecture

rnent approach. The primary goal was to determine
if certain, desirable quality attributes present in most
product line architectures were also present in the inter-
ferometer architecture. In addition, wc were interested
in performing behavioral analysis in order to study how
behavioral interactions in the core architecture might
potentially impact deriv a ,t’ wea.

The remainder of this section is divided into Munual
Architectural Analysis and Analysis IJsang Automated
Suppod Tools. One of the interesting aspects of this
bifurcation of the analysis along manual and aut,ornated
andysis lines is that the quality attributes that fall into
the class of variabilities seem to he supported only by
manual analysis techniques whereas the cornrnonmlitieu
seem to be supported in some manner by automated
tools. As the work described here is only a single point
of data, we do not attempt to explain the ohscrvatiorl,
although we do find it interesting and recognize the ueed
for further investigation along these lines.

3.2 Manual Architectural Analysis
Base, Clements, and Kazman divide quality attributes
into those that can be discerned by observing the aystem
at runtime and those that cannot [4]. Of the ones that
cannot be observed at runtime, modifiability is the key
property required by the interferometer product line.
Modifiability, according to Baas et al., “may be the qual-
ity attribute most. closely aligned to the architecturc of
a aystem,” and, as such, is a good way to evaluate the
architecture. B a s et ai., identify four categories of rnod-
ifiability: Extensibility or changiag capabilities, Delet-
ing capabilities, Portability (adapting to new operating

environments), and Restructuring.

To evaluate the modifiability of the interferometry prod-
net. line architecture, we found examples of each of the
four categories of modifiability in the requirements spec-
ification of a syalern currently being developed in the
product line . We t h n manually analyzed the effect of
each change on the specified architecture. This inter-
ferometer system was chosen hecause its requirements
were well documented and its rcquirernents presented a
good challenge to the modifiability of the baseline ar-
chitecture.

The a,pproach used is very Birxlilar to SAAM [9], a
scenario-baaed method for analyzing architectures. A
scenario is a description of m expected use of a gpe-

cific product line. SAAM alao tests modifiability, e.g.,
by proposing specific chmgcs to be made to the sys-
tem. The advantage of the scenario-based approach is
that it movea the discussion from a rather amorphous,
high-level of generality (%nodifia.bility”) to a concrete,
context-bmed level of detail particular to the product
linc (“adds pathlength feedforward capability”).

Thc interferometer product line has significant require-
ments that, fall under each of the four categories of mod-
ifiability.

0 Potential extensibility variations include new al-
gorithms (e.g., a different fringesearch algorithm)
and added features (c.g., pathlength feedforward,
internal metrology),

. Dclctions involve changer required to support the

1 1 / 0 4 / 9 9 THU 1 1 : 3 6 FAX 5 1 5 2 9 4 0 2 5 8 I St1 COMPUTER SCIENCE I& uuu

’ Modifiability Efiect on Emample Scemrrio Scenrrrao n p e
Attribute

No change required Algorithm for fringe swrch Change algorithm Extensibility
Architecture

I changed
Excensibility 1 Add feature I Pathlength feedforward I No style change;

1 capability I additional connectors
Extemibility I Add feature I hternel metrology added I No style change;

I
-

additional components
and connectors

Deletion

ratexface intact; component Starlight detector Chmge sensor Portability
t o remote device

Connector unchanged Shift handheld paddle Change HCI device Portabilisy
than actual

No change rcquired Use pseudnytu rather Delete input

I hardware chttnged I implementation changes
Portability I Add input units] More starlight collectors I No style chance; -

“duplicate” existing pieces;
see diecussion

Portability

Might change style and Proposed switch to CORBA Optimize for rcuse Restructuring

No style change; Distribute targeting Add proceasors
computation change within components

I I I I connectors
~~ -

Table 2: Analyzing the Architccture‘s Modifiability via Scenarios

incremental capabiIities of tho various tetrthads
and prototypes. For example, one testbed uses
pseudostar (simulated) input rather than actual
starlight, whereas the science interferometers will
use direct starlight aa input,.

0 Portability changes are widespread, since differ-
ent interferometers in the product line will. have
different nurnberfl of starlight collectors, mirrors,
tolescopes, etc. In addition, different systems will
use different starlight detector hasdware and dif-
ferent operator interfa.ces (e.g., a handheld paddle
for the teatbeds, remote commandability for the
flight units). The interferometer software will run
on multiple processors, with the numbcr of proces-
sors a variability among the systems.

Restructuring changes that are not included in the
other categories am limited. A proposed change to
optimize for reuse is the only scenario used in the
architectural evaluation.

As shown in Table 2, nine representative changes were
selected to evaluate the modifiability of the architectlre:
three extengibility changes, one deletion, four portabil-
ity chmges, and one restructuring. All these changes
are variabilitiea in the product line specification, Le.,
not common to all the interferQrnaters. The approilch
was to use these rcprcsentative scenarios to exercise and
evaluate the baseline architecture. A discussion of the
results of the application to tho baseline interferomcter

architecture and, more generally, of the advantages and
disadvantages of this approach can be found in Section
4.

3.3 Analysis using Automated Support Tools
One of the goals of this project was to determine the
extent to which automated support took could be used
to aid in the analysis of a product-line software archi-
tecturc. Specifically, it was our intent to identify tools
that could be adopted with little overhead, while still
satisfying the objective of formally analyzing the archi-
tectural behavior. This meant that the selected tools
should have a reasonable level of support and documen-
tation.

Analysis Steps
Thc following tasks were identified as the critical path
for achieving our automated analysis objectives: (I) Ar-
chitccture specification in an ADL, (2) Formal specifi-
cation of behavior, and (3) Analysis of behavior. The
approach used in the selection of notations and tools is
described here. The result9 of the tool-supported anal-
ysis w e described and discussed in Section 4.

ACME [5] ADL and ACMEStudio [I] were choeen for
the specification of the architecture. ACME is an ar-
chitecture description language that has been used for
high-level architectural specifications [5]- ACME con-
tains constructs for embedding specifications written
in J wide variety of exiatiug ADLs, making it extensi-
ble I;o both existing and future specification languages.
ACME is supported by ttn a,rchitectural specification

1 1 / 0 4 / 9 9 THZT 1 1 : 3 6 FAX 5 1 5 294 0258 ISZT COMPLPTER SCIENCE lg 0 0 7

tool, ACMEStudio, that supports graphical construc-
tion and manipulation of software architccturee. Anal-
ysis of the design documents yielded the softwarF archi-
tecture depicted in Figure 1.

In addition to recovering and specifying the high-level
view of the interferorncter architecture, behaviors of
component interactions were derivad from existing de-
sign documentation. Specifically, we used information
fouud in design documents to help construct a forrnal
Ypecification of component interactions in the intarfer-
ometer software. The Wright ADL was uveri for the
€orma1 specification of behavior. Wright [2] is an ADL
baed on the CSP specification languagc [6]. The pri-
mary focus of the Wright ADL is to facilitate the speci-
fication of connector, role, and port semantics. In xddi-
tion to being based on the well-established CSP ssman-
tics, existing Wright tools support the ACME ADL, so
provided a clean interface with the existing specifica-
tion.

The final atep involved using t.he formal specifications
to analyze behavior of various aspecttl of certa.in inter-
actions between components in the architecture. To in-
crease confidence in the validity of the formal analysis,
source code was informally reverse engineered to deter-
mine whet.her properties observed in the formal speci-
fication were precrent in the implementation. The Spin
Model Checker was used to further analyze behaviors
of interest. Spin [7] is a symbolic model checker that
has been used for verifying the behavior of a wide va-
riety of hardware and software applications. Promela,,
the input specification language for Spin, is based on
Dijkstra’s gumled command language HA well a8 CSP.

The primary reason for choosing each of the notatione
and tools listed above wa.s a pragmatic one. The no-
tations are related eithsr via direct tool interchange
support (ae is the ca,se between ACME and Wright) or
by some Yemantic foundation (cg , , CSP foundation lor
Wright and Promela,). As such, the ACME ftarrleworlc
(including Wright specification*) could be used for spec-
ifying the interferometer architecture, and verification
using Spin could follow naturally with a small amount
of translation of the embedded Wright into Promela.

4 RESULTS
4.1 Architecture Specification
As shown in Figure 2, the original documentation for
the interferometry software depicts the architecture us-
ing a layered style. However, during the analysis a r~d
subsequent epecification of the architecture, it was dis-
covered that the architecture, as documented, exhibited
“layer bridging” properties whereby non-adjacent layers
in the architecture communicated, thus “bridging” or by
passing intermediate layers. In addition, sibling compo-
nents located in a layer were found to cornmunicatc,
contrary to the la,yere.d style. Consequently, thc high-
level interferometer architecture was re-specified in a

style that was consistent with the services a.nd behaviors
described in lower-level documentation. The resu lhg
architecture, shown iu Figure 1, more accurately spec-
ified the architecture as a heterogeneous architecture
with a collection of comm~rsicsting processes as well its
a constrained pipe and filter interaction between the
Instrument CDS and all of the other remaining compo-

I Configurndon I
~ __ __

Figure 2: Original. Core Architecture

4.2 Manual Analysis Results
The baseline architecture shows the commonality that
exists among the members of the product line. Each
member of the product line uses this architecture or an
a,daptatioII of it. Thus, nothing in the architecture can
constrain the anticipated vwiabilitiea among the mem-
bers.

For the interferometer product line, a key aspect of the
“goodness” of t.he baseline architctture wm how mod-
ifiable it was. It was with the goal of exercising the
product linc architecture that we considered the effect
on the architecture of each of nine repreaentative mod-
ifiability scemrioa, drawn from the documentation.

Effect on architecture of scenrs~iou
Table ‘2 summasizes the results of our manad <maly-
eis of thc product line architecture lor modifiability via,
the nine scenarios dcscribecl in Section 3.2. Column 1
list8 to which of the four categories of modifiability each
scenario belongs (Extensibility, Deletion, Portability, or
Restructuring). Column 2 is a high-level description of
the scenario (e.g., “Change algorithm”, “Add feature”,
“Change sensor”, etc.). Column 3 briefly describes the
particular scenario. Column 4 indicates the effect of
that modifiability scenario on the baseline architecture.

Of the nine scenarios, four involved no change to the
baseline aschitectura. These acenrtrios wcre: change of
algorithm, deletion of input, dlange of human-computer
interface device, and change of senaor device. Two
other sccnarios, related to cxtenaibility, require addi-
tional connectors and, in one case, an additional comprz
ncnt not in the original architecture. However, these ex-
tensions are relatively straight-forwad and their scope
is easy to anticipate.

1 1 / 0 4 / 9 9 THLT 1 1 : 3 7 FAX 5 1 5 2 9 4 0 2 5 8
0 0 8

The other three scenarios require significant changes to
t,he product linc architecture, but the changes art: not
visible at the level of the specified architecture. In one
case (add input units), implementation of the scenwio
can involve adding “arms” (Le., additional axes) to the
interferometer. This has no effect on the more cletailed
core architecture (which represents a single axis), but
requires duplication/replication of connectors and com-
ponents OIL the baseline architecture, a significant archi-
tectural conscqueIlce. The scenario that distributes the
targeting computation over more processors can be ac-
comodated without change to the baeeline architecture.
At the level of the model? there was no commitment
to implementation details such as number of proces-
sor3. The sole restructuring scenario, a possible switch
to CORBA, might change both the style and the imple-
mentation of t,hc connectors, and would require further
investigation.

Discussion
Locality of change. Most, modifiability scenario3
demonstrated good locality of change for the specified
architecture (i,e., involved changee that could be readily
scoped). The existeIlce of an architectural specification
assisted in this effort. Most scenarios do not affect the
services required of other components.

Units of reuse. The units of reuse in the architecture
tended to be small. For example, a Delay Line is a
unit, but a Delay Line-Fringe Tracker-Star Tracker is
not. All Delay Lines have a, high degree of common-
ality, and the interfaces between a single Delay Line
and a single Fringe Tracker me similar for all mern-
bers (the “portability layer”), but the number of Delay
Linc-finge Traclcer interfaces varies greatly among the
product line members. The architectural .style wits not
changed by the scenarios, but the number of connec-
tions and, to a lesser degree, components, was chaaged,
There are many cliflerent. cross-strappings possible and
a large amount of reconfiguration involved in meeting
the real-time constraints on the various missions. Hav-
ing small units of reuse may complicate verification and
integration of indivirhml members (e.g., with regard to
contention, race conditions, starvation, etc.).

Role of redundancy, Severd of the scenarios involved
adding multiple, identical components or connectors.
However, these copiev arc not redundant, in the sense of
adding robustness, since they arc dl needed to achieve
the required performance. For example, if starlight
collectors are added, it is t o increase the amount of
starlight that the interferometer can process in order
to meet requirements for detecting dim targets. Like-
wise, if processors are added, it is to meet requirements
for increasing the resolution capability of an interfer-
ometer. In this architecture, redundancy does not add
robustness for the most part; there are not spare unit3
or alternate data paths.

Performance. One of the unusual aspects of this ap-
plic:a,tion is that the range m d scope of the variabilities
tend to be non-negotiable. This is due to the very tight
performance and accuracy requirements on the interfer-
ometry missions. For example, an upcoming interferom-
eter, the Space Interferometry Mission (SIM), requires
precision at the level of picometer metrology and mi-
crosrcsecond mtrometry. To achieve this level of preci-
sion, significant real-time constraints cxist with limited
flexibility to acenrnodate reuse concerns. Performance
requirements on each mission also drive the choice of
hardware, algorithmu, and added capabilities. The con-
sequence for reuse is that in tradeofis of modifiability
vs. performance, performance wins.

Architectural style. Dcspite the range of variations
that a,ffect the architecture (e.g., varying the number of
ports on a component, varying the number of instances
of a component), the interferometry project ie commit-
ted to keeping the architectural style stable. Most im-
portantly, this dcmonstratea itself in their maintaining
thc commonality of the interfaces. The number of in-
terfaces is not constant among product. line members,
but the interfaces themselves are relatively stable. Rec-
ognizing the long tirneline over which the product line
will extend (proposed la~~nches from 2003 to 2020) and
the primacy of performance [with continuow improve
ment of hardware and algorithms), the project has done
a, goad joh of designing for evolwbility.

Repeatable process. The manual analysis of the archi-
tecture is L repeatable process that can be applied to
product. lines. The process is m f~llows:

1.

2.

3.

4.

4.3

Identify anticipated changes from available docu-
mentation and project infonnation. These antici-
pated changes form product line variabilities that
the baseline architecture must accomodate.

Categorim the allticipatcd changes into rnodifia-
bility categories [extcnsibility, deletion, portability,
rcstructuring).

Select and develop scenarios for each category. The
choice of scenarios is made to broadly challenge the
goodnew of the architect,urc with regard to the four
modifiability categories.

Evaluate the effect of each modifiability scenario on
the baseline architecture. This gives a measure of
the goodness of the architecture with respect to the
anticipated variabilities for this product line.

Analysis Using Automated Support Tools
While the manual au&sis addressed issues related di-
rectly to the use of the interferometer architecture as
a product line, the automated analysis vas primarily
of use for analyzing behavior viewed as common across

ISU COMPUTER SCIENCE 009

product line members. As such, any behavioral proper-
ties (both positive and negative) discovered at the archi-
tectural level were likely to be common to 311. mcmbers
of the product line.

Spin vcY"ijiC6tiOn
A key element of the interferometer architecture was
the use of the "Target Buffer" connector. This connec-
tQr, both in the design and in the implementation, is a
non-locking buffer used to communicate star targets to
the Delay Line component by several other components.
The Target Buffer connector was viewed a8 a possible
concern, especially in light of the non-locking feature. It
was determined that behavior involving this connector
should be formally specified in order to study itas impact
on the system.

There are several components that are either directly
or indirectly impacted by the non-locking natura of the
Target Buffer connector: Target Sources, a Command
Controller, and a Target Generator component. The
Target Generator uses the values written to the Target
Buffer by various Target Sources to compute a ta.rget
position for the interferometer. The Command Con-
troller provides control for the computation by enabling
or disabling the Target Sources. Target Sources write a
timestamped value to the Target Buffer, with the times-
tamp determining a time that the target value becomes
valid.

The Target Generator uses the following Four-step se-
quence for calculating the target position:

1. Promote waiting targets to active status if the cur-
rent time is greater than or equal to the timestamp

2. R.ead new targets from enabled target sources

3. Fend (assign to wait statu3 or activate new targets
based on timestamps)

4. Compute the total target

The Wright specification of the interaction between the
Target Generator and the potential sources of data that,
are written to the Target Buffer is shown in Figure 3,
The Source specification models the fact that a source
internally decides whether or not to write a new value to
t,he Target Buffer. Finally, the Target Generator speci-
fication models the target-position algorithm described
above.

From the Wright specification, we constructed the
Pro~r~ela specification found in Figures 4 and 5 with the
intention of determining whether or not the following
situations could occur.

Ssyle TargetCempufation
Connector TargcrBuffer

Role Writer = u r i t e t a q e t ! x -> Writdr 1 - 1 T i ck
Role Roador = seedtargstlx -> Reader 1 - 1 Tick
Glue = Uritor.writetkmget!x -> Glue c1

Reader.raadtarget!r -> Glue [I Tick
Component Sourca

Port CDSComad = enable -> CDSCommand 1 ' 1

Port DLTarget write !x -> DLT4zg.t I - 1 Tick
Cmpuration = (CDSComraaad.enabla -> Generate) CJ

whara €

disable -> CDSConarand 1'1 Tick

[CDSCommand.diaablo -> Computatiah) n Tick

Ganorate = DLTargat.write!y -> Goharate [I

1
Generate (1 Tick

Component TargetGenerater
PorE Input = readtargeclx -> TargetBUffcr 1 - 1 Tick
Computation = (_ ~ Y O U O C ~ ->

Input.read,tnrget?n -?
-pend-or-acti*ate ->
,compute -> Compura%ion c] Tick)

end Sty le

CD~figuzarion TargeeCPmputationInatanC.
Inetahcos

t b l : TargetBuffer
s r c l : Source
d l : TargatGanaator

srcl.DLTargat as rbl.UriCst
d l . Input as tbl .Reader

Artachmenta

End Configurntioh

Figure 3: Subset of the Wright Specification

Data &om Disabled Sourcee. IS there a poten-
tial for calculating the targct position by using
data from sources that are currently disabled?
Beat Data from Enabled Sources. IS there a
potential to calculate a target, position by uQing
data that is less current than data currently in
the target buffer?

In the first case, we were intercsted in determining
whether or not it was possible to generate a target po-
sition by using data from inactive sources. In eesence, a
target position input can be read by the Target Gener-
ator, pended due to the timestamp (e.g., the timestamp
indicates that the target value is not to be used until
some time in the future), and subsequently promoted
into use when the timestamp matches (or precedes) the
current time. The potential inconsistency occurs during
the time that the target is pended and is caused by the
fact that a soutce can be disabled during this waiting
period.

The second case involves the following situation. As bc-
fore, J, target from a source is read, potentially pended,
and eventually promoted. Because of the sequencing of
events, a new target value from the souce can over-
write the recently promoted target, and based on the
timestamp be valid for immedia.te use.

1 1 / 0 4 / 9 9 THLI 1 1 : 3 9 FAX 5 1 5 2 9 4 0 2 5 8 I SLT COMPLPTER SCIENCE M 010

psoctype eoqrco-1 (chan cdo)
I

chm cmd;
c b m t s = C13 09 i i n t 1;
ehan mrg = 111 o f i in= 1;
int accive-or-inactive;

cda?cmd;

cmd?activc-or-inactivs;

(rnsga-gsnazated C max-nsga) %It
(acrive-or-inactive t r u n) ->
i f
: : run moe~age(meg> ;

rneg?a,tbl;
run timostamp(ts1;

msge-gonorated = msgs-gonerated + 1;
tE?Ei_ap;

: : skip;
f i ;
(done != true) -> cmd?attivw-or_inactiva;
(done == true) -> break:

Figure 4: Promela Specification of Target Source

Using the Spin model checker, it was verified that
these situations do in fact, exist. In order to determine
whether these cases were also prcsent in the code, we
exa,mined source files and werc able to verify that the
situations, as documented and aa specified with Wright,
did in fact exist in an early, pra-flight version of the
source code.

In each of these cases, the use of a non-locking buffer
coupled with the target-generator algorithm provided
the potential for intermittent values that WE: incousiu-
tent with the desired and current target. The interfer-
ometry project engineers confirmed that the Spin model
checker accurately modeled the software behavior in
both anomalous situations. In the first case, a target
from a currently disabled target source may still be ac-
tivated. In the second case, a newly received target with
a leas-current timestamp can overwrite an active target.
However, in neither ca,se is the software behavior con-
trary to intent, given the underlying assumptions about
the operational use of the software.

Discussion
The automated analysis of the interferometer architec-
ture using the Spin model checker was grea,tly facilitated
by the availability and use of the Wright and ACME
ADLa. In effect, by using this combination of tools, v e
were able to use model checking in a manner that was di-
rected by the structure and behavior of a softvare archi-
tecture. That is, the software architecture specification
was used to direct the model checking activity by fa-
cilitating identification of potentially inleresting pointa
of interaction in the interferometer architecture. Given
the fact that any bchavior observed iu the architecture is

procaype delay-line (chan v a l i d)
I

i n t E U ~ ;

i n t v ;
do
; : (mege-penorated C maY,mzgs) ->

/* "activqticn/promo~ioh" of
pendad c u g e t e achieved
by maintaining preriaus
value of s l or a2 w /

/ C read nev targets f r o m active target BoUrcea +/

(v == 0) -> ¶kip:
(v = 1) ->
a 1 = c - tb l ;
o-rbl = clsar;
(v == 2) ->
L Z = 0-tb2;
o-tb2 = c h a r ;
(v == 3) ->
51 = o - t b l ;
02 = 0-tb2;
o-tbi = c l e a r ;
0-tb2 = c l a m ;

Figure 5; Promela Specification of Delay Line

potentially replicated among all product line members,
we found that tha approach was a good complement to
the manual anaIysis activities.

5 RELATED WORK
AS described in Section 3.2, the Software Architecture
Analysis Method (SAAM) is a scenari-based method
for architectural assessment. A related architectural
analysis method is the Architecture Tradeoff Analysis
Method (ATAM) [lo]. This iterative method is based
on identifying a set of quality attributes and associated
analysis techniques tha,t ~newure an architecturc along

1 1 / 0 4 / 9 9 THLT 1 1 : 3 9 FAX 5 1 5 294 0258 I SZT COMPUTER SCIENCE U l l

the dimensions of the attributes. Sensitive points in
an architecture ass determined by assessing the degree
to which an attribute analysis varies with variations in
the architecture. In our approach, we focus on qual-
it,y attributes that are specific to product line architec-
tures. As such, the approach can be applied in &her
the SAAM or the ATAM context.

Rapide [ll] is a suite of techniques and tools that
support, the use of executable architectural design Ian-
guages (EADLa). The toolset suppQrts analysis of time-
sensitive systems from the early construction phaee
(e.g., architecture definition) to analysis of correctness
and performance. In our work, the motivation for choos-
ing a particular technique was based on a desire to even-
tually transfer the technology to the project engineers.
In addition, we were interested in interoperability with
other tools. As such, we found that the Acme ADL and
associated AcmeStudio tool presented the least m o u n t
of cducationd overhead. Acme also had the advantage
of being able to embed other ADLs in ita apecificatiorl.
However, we recognize that several dternativcs such as
Rapide exist and are investigating the possibility of per-
forming similar ~ ~ ~ Y S C S prith those tools.

6 Conclusion
The work described here identifies and demonstrates a
process for analysis of an existing product-line archi-
tecture. The results of the architectural recovery and
discovery Bre captured in an ADL model to support
subsequent inquiries. The architecture is manually arm
lyzed against a set of representative scenarios that cap-
ture the required quality attributes. Further analysis of
critica,l behaviors at the architectural level ugng auto-
mated tool6 and model checking to evaluate the conse-
quences of architectural decisions for the product line.
The application of this combined approach to the inter-
ferometer’e product line architecture resulted in some
meaeuremcnts o f both the flexibility and limits of its
architectural style that could assist the project.

Further work is planned in several area,s. In previous
work we have used formal techniques for reverse en-
gineering of code [?]. Wc plCm to investigate how re-
verse engineering can also be used to assist in the r e
covery of product linc assets. This may involve consid-
eration of different. analysis frameworks (e.g., Rapide)
that offer fully integrated environments and investiga-
tion of Wright/Spin translations. We also plan to pur-
sue the relationship between prodnct-line commonali-
tiea/variabilitiea and analysis techniques. The observar
tion hcrs that quality attributes relating to variabili-
ties (e.g., modifiability) seem best supported by mannal
analysis techniques whereas commonality attributes are
best analysed with automated tool support (e.g., modcl
checking) merita further study. Finally, we would lilw
to makc more precise the role of architectural issues in
product line decision modela.

Acknowledgments
We thank Dr. John C. Kelly for his continued support of
this work. We thank Dr. Braden E. Hines, Dr. Charlee
E. Bell, and Thomas G. Lockhart for helpful, discussions
and explanations regarding the reuse of interferometry
Software. Part of thc work described in thia paper w u
carried out at the Jet Propulsion Laboratory, California
Institute of Technology, lrndcr a contract with the Na-
tional Aeronautics and Space Administration. Funding
warns provided under NASA’s Code Q Software Program
Center Initiative, UPN #323-08.

REFERENCES

Acmestudio: A graphical design environment for
Acme. http://www.cs.cmu.edu/-acme/ AcrneStu-
dio/ AcmeStudio.htm1.

R,. Allen and D. Gmlan. A Formal Basis for Archi-
fcctural Connection, ACM Transactiunu on Soft-
ware Engineering m d Methodologv, July 1997.

M. A. Ardis and D. M. Weiss. Tutorial: Defining
families: The commonality analysis. In Proceedings
nf ICSE ’97, May 1997.

L. Bass, P. Clements, and R. Kwman. Software
Architecture in Practice. Addison Wesley, 1998.

D. Garlan, R. T. Monroe, and D. Wile. Acme: An
Architecture Description Interchange Language.
In Procccdinp of CASCON’g7, pages 169-183,
Toronto, Ontario, November 1997.

C. Hoare. Communicating Sequential Pmccsse~ .
Prenticc HaII, 1985.

G . J. Holzmtmn. The Model Chacker Spin. IEEE
l?ra7rsactions on Software Engineering, 23(5), May
1997.

JPl interferometry projects.
hl;tp://huey.jpl.nasa.gov/ice/ice-projects-html.

R. Kazmw, G. Abowd, L. Bws, and P. Clernents.
Scenari-based analpis of software tlrchitecture.
IEEE Software, pages 47-55, 1996.

R. Kazman, M. Klein, M. Barbacci, H. Lipson,
T. Longstaff, and S. Cnrriere. The Architec-
ture Tradeoff Analysis Method. In Proceedings of
TCECCS, 1998.

D. Luckham and J . Vera. An Event-Based Archi-
tecture Definition Language. IEEE Tkunsactions
on S O ~ ~ W I Z ~ ~ Engineeriiny, 21(9):717-.734, 1995.

R. Luta. Extending the product family approach
to support safe reuse. The .lnumml of Sgstems and
Software, 2000.

http://www.cs.cmu.edu/-acme

1 1 / 0 4 / 9 9 THZI 1 1 : 4 0 FAX 515 2 9 4 0258 I SU COMPUTER SCIENCE

[13] N. Medvidovic and R. N. Taylor. Exploiting archi-
tectural style to develop B family of applications,
IEE Proc. in Software Engineering, 144(5-6):237-
248, Oct-Dec 1997.

[14] Origins program. http://origins.jpl.nasa.gov.

[15] M. $haw and D. Gaclan. Suftware Architect7ms:
Perspectivev on an Emerging Discipline. Prentice
Hall, 1996.

http://origins.jpl.nasa.gov

